

Iwaki Pneumatic Drive Bellows Pump

FLP-60W

Instruction manual

Thank you for choosing our product.

Please read through this instruction manual before use.

This instruction manual describes important precautions and instructions for the product. Always keep it on hand for quick reference.

Order confirmation

Open the package and check that the product conforms to your order. If any problem or inconsistency is found, immediately contact your distributor.

a. Check if the delivery is correct.

Check the nameplate to see if the information such as model codes are as ordered.

b. Check if the required number of accessories is provided.

<Attached accessories>

Two pair of the straight fittings with plugs.

c. Check if the delivery is damaged or deformed.

Check for transit damage and loose bolts.

Contents

Order confirmation	
Safety instructions	7
Warning	8
Caution	9
Precautions for use	
Overview	12
Introduction	12
Pump structure & Operating principle	12
Features	13
Operation mode	13
Safety functions	13
Part names	14
Pump	14
LPC-1	15
Control panel	15
LEDs	16
Operating conditions	17
Pump stroke	17
Supply air pressure range	17
Liquid temperature range	17
Liquid characteristics	
Do not run the pump with the following liquid	17
Use care handling the following liquid:	17
Operation and Stoppage	18
During operation	18
When stopping the pump	18
During stoppage	18
Air exhaust port	18
Leak sensor	18
Ambient temperature	18
Pump surface temperature	18
Noise from pump	18
Identification codes	19

Installation	20
Pump mounting	20
Liquid line piping	22
Suction line	23
Flooded suction	23
Filtration (suction line end)	23
When installing a valve on the suction line:	23
Discharge line	23
When installing a valve on the discharge line:	23
Filtration (circulation)	23
Filtration (discharge line end)	23
Depressurization at pump stop	23
Degassing	24
Air line piping	25
Before air piping	25
Solenoid valve (SV)	25
Regulator	25
Supply air port I.D.	26
Composite effective cross-sectional area	27
Composite effective cross-sectional area required for decompression process	27
Composite effective cross-sectional area required for compression process	27
Effective cross-sectional area	28
Preventive measures against condensation	28
Recommended pneumatic devices	28
Air line piping diagram	29
Electric wiring	31
Installation	31
Lead wires	31
Extension of leak sensor wires	31
Installation of proximity switch wires	31
Extension of proximity switch wires	
Preventative measures against noise	
Wiring diagram (LPC-1)	32
Wiring diagram (Whole system with a double solenoid valve: Pulsation control)	33
Wiring diagram (Whole system with a single solenoid valve: Feedback control)	
End terminals	
Power line	
Single solenoid valve	
Double solenoid valve	36

User PLC	37
Proximity switch/Displacement sensor/:Leak sensor	38
Electropneumatic regulator or Pressure sensor	39
Operation	40
Before operation	40
Programming menu	42
Basic key operation	43
Main menu	43
Pump operation	44
Pump model selection	44
Teaching	45
Manual operation	46
Operation start	46
Operation stop	48
AUTO operation	49
Display information	50
Operation display	50
Total count display	50
Speed compensation (AUTO mode)	50
External input for compensation speed operation	50
Operation programming	51
Feedback control (4. SETTING: QUANT. CONST. CTRL)	52
Target flow setting	52
Electropneumatic regulator setting	52
Liquid volume per shot setting	53
Alarm output (4. SETTING: ALARM)	55
Time up alarm setting (Default: 20sec)	55
Fast alarm setting (Default: 140spm)	55
Life alarm setting (Default: 99,999,999 counts)	55
Setting confirmation (4. SETTING: SET VALUE CONFIRMATION)	56
Default setting (4. SETTING: RESET ALL DATA)	57
Keypad lock (5. KEY PROTECT)	58
Keypad lock activation	58
Keypad lock deactivation	58
Total number of pump shots confirmation/cancellation (6. TOTAL COUNT)	59
Confirmation	59
Cancellation	59
Regulator set pressure confirmation (8. PRESSURE SENSOR)	60
Alarm output cancellation (9. ALARM RESET)	61

Maintenance	62
Troubleshooting	62
Inspection	65
Daily inspection	65
Periodic inspection	65
Wear part list	66
Specification/Outer dimension	67
Specification	67
Pump	67
LPC-1 controller	67
Proximity switch	68
Displacement sensor	68
Leak sensor	68
Outer dimension	69
FLP-60W	69
LPC-1 controller	69
Part names	70
FLP-60W	70

Safety instructions

Read through this section before use. This section describes important information for you to prevent personal injury or property damage.

■ Symbols

In this instruction manual, the degree of risk caused by incorrect use is noted with the following symbols. Please pay attention to the information associated with the symbols.

Indicates mishandling could lead to a fatal or serious accident.

Indicates mishandling could lead to personal injury or property damage.

A symbol accompanies each precaution, suggesting the use of "Caution", "Prohibited actions" or specific "Requirement".

Caution marks

Prohibited marks

Requirement marks

!\Export Restrictions

Technical information contained in this instruction manual might be treated as controlled technology in your countries, due to agreements in international regime for export control. Please be reminded that export license/permission could be required when this manual is provided, due to export control regulations of your country.

AWARNING

Turn off power before work

Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed. Let other people know about the situation by displaying a notice such as "POWER OFF (Maintenance)" near the power switch.

Confirm safety in your working area

Keep away from the pump when turning on power. The pump doesn't have an ON-OFF switch. The pump starts as a power cable is plugged in.

Stop operation

If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.

Do not use the pump in any condition other than its intended purpose

The use of the pump in any conditions other than those clearly specified may result in failure or injury. Use this product in specified conditions only.

Do not modify the pump

Alterations to the pump carries a high degree of risk. It is not the manufacturer's responsibility for any failure or injury resulting from alterations to the pump.

Wear protective clothing

Always wear protective clothing such as an eye protection, chemical resistant gloves, a mask and a face shield during disassembly, assembly or maintenance work. The specific solution will dictate the degree of protection. Refer to MSDS precautions from the solution supplier.

Spill precautions

Ensure protection and containment of solution in the event of plumbing or pump damage (secondary containment).

Do not touch the pump or pipe with bare bands

Risk of burning. The surface temperature of the pump or pipe rises high along with liquid temperature in or right after operation.

Do not remove covers

Do not remove the right-and-left cylinder head covers or the top-and-bottom covers during operation in order to reduce the risk of personal injury.

Depressurize piping before disassembly

Release a pressure from both liquid and air lines before dismantling the pump or removing piping.

A CAUTION

Do not lift the pump by gripping the right-and-left cylinder head covers or the top-and-bottom covers

The pump can drop unintentionally as one of those parts breaks. Hold the pump by the stud bolts to lift it up.

Qualified personnel only

The pump should be handled or operated by qualified personnel with a full understanding of the pump. Any person not familiar with the product should not take part in the operation or maintenance of the pump.

Use specified power only

Do not apply any power other than that specified on the nameplate. Otherwise, failure or fire may result. Ensure the pump is properly grounded.

Ventilation

Fumes or vapours can be hazardous with certain solutions. Ensure proper ventilation at the operation site.

Do not install or store the pump:

- · In a flammable atmosphere.
- In a dusty/humid environment.
- In a corrosive atmosphere.

Do not stand on the pump

Do not use the pump as a platform. Injury or damage may result when the pump turns over.

Flushing before operation

Flush the inside of the pump and piping with pure water or the liquid to be delivered before the start of operation.

Do not run the pump with the following liquid:

- Liquid that easily crystallizes
- Slurry
- Low conductivity hydrocarbon liquid

Use care handling the following liquid:

- Stripper
- Solvent
- Hydrazine
- Fuming sulfuric acid

A CAUTION

Static electricity

When low electric conductivity liquids such as ultra-pure water and fluor inactive liquid (e.g. FluorinertTM) are handled, the static electricity may be generated in the pump and may cause static discharge. Take countermeasures to remove the static electricity.

Wear part replacement

Follow instructions in this manual for wear part replacement. Do not dismantle the pump beyond the extent of the instructions.

Before returning product

Be sure to drain chemicals and clean the inside of the pump before return so that a harmful chemical does not spill out in transit.

Observe the maximum stroke rate

Operation above the maximum stroke rate may reduce the life of bellows. See "**Specification**" on page 67 for detail. Set the LPC-1 controller not to run the pump over the limits even under dry running.

Disposal of a used pump

Dispose of any used or damaged pump in accordance with local rules and regulations. If necessary, consult a licensed industrial waste disposal company.

Precautions for use

- During transit:
- -Do not hit/wet the package.
- -Do not place the package lateral/up side down.
- -Do not stack the package on top of another.

• Electrical work should be performed by a qualified electrician. Otherwise, personal injury or property damage could result.

- Do not install the pump:
- -In a flammable atmosphere.
- –In a dusty/humid place.
- -In a corrosive atmosphere.
- Allow sufficient space around the pump for easy access and maintenance.

- Use care handling the pump. Do not drop. An impact may affect pump performance. Do not use a pump that has been damaged to avoid the risk of electrical damage or shock.
- Do not lift the pump by gripping the right-and-left cylinder head covers or the top-and-bottom covers. The pump can drop unintentionally as one of those parts breaks. Hold the pump by the stud bolts to lift it up.

 The pump and controller are not waterproof. Do not operate the pump and controller while wet with solution or water. Failure or injury may result. Immediately dry off the pump and controller if they get wet.

 Do not close discharge line during operation. Solution may leak or piping may break.

Solution in the discharge line may be under pressure. Release the pressure from the discharge line before disconnecting plumbing or disassembly of the pump to avoid solution spray.

 Wear protective clothing when handling or working with pumps. Consult solution MSDS for appropriate precautions. Do not come into contact with residual solution.

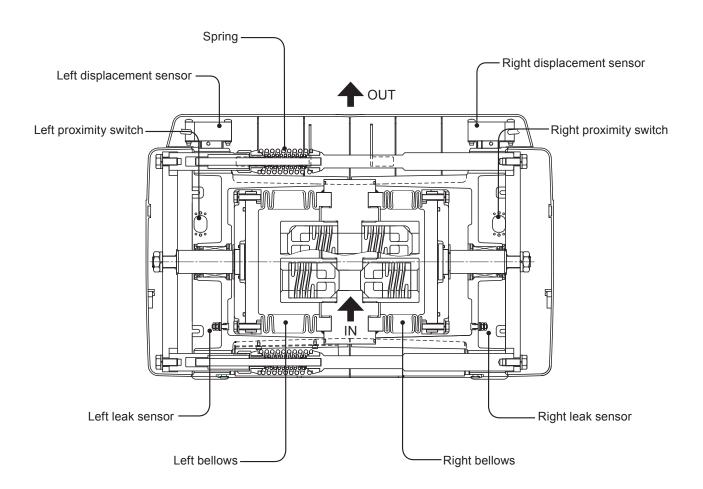
Do not leave the pump with any chemical in the bellows for a long period.
 Some chemical gas can penetrate the bellows and corrode metal parts.
 Run the pump for ten minutes a day for replacing gas when the pump is going to be suspended two or three days.

Overview

Pump characteristics, features and part names are described in this section.

Introduction

Pump structure & Operating principle


The FLP-60W is a pneumatic drive pump with a pair of bellows and is controlled with the LPC-1 controller. The special design of this pump alone reduces discharge pulsation without the assistance of a dampener, as low as the combination of existing models and a dampener can achieve.

Principle of operation

The LPC-1 controller determines and keeps the optimal movement of the bellows with the right-and-left displacement sensors and timely supply-air switching. This mechanism ensures the minimum discharge pulsation at any operating conditions as long as specifications are met.

Supply-air switching

The FLP-60W controller determines a ON/OFF time of the solenoid valves by the input from displacement sensors (ON time) and proximity switches (OFF time).

Features

Low discharge pulsation

Displacement sensors and proximity switches monitor bellows movement for the LPC-1 controller to determine the optimal time to offset flow pulsations one after the other without the support of a dampener.

No need for a pressure and a flow sensor

Displacement sensors and proximity switches alone monitor bellows movement. Need for a pressure and a flow sensor is eliminated.

Suitable for high-temperature liquid

The maximum allowable liquid temperature increases up to 180°C.

• Increased supply air pressure level

The maximum allowable supply air pressure increases up to 0.5MPa.

Safety design

The bellows are welded into the pump head to reduce the possibility of a leak. A leak sensor also installed in the air chamber to detects an accidental leak by bellows damage

Operation mode

MAN mode (Manual operation)

Start/Stop of the pump operation with the LPC-1 controller.

AUTO mode (Automatic operation)

Start/Stop of the pump operation with the signal input from user's PLC.

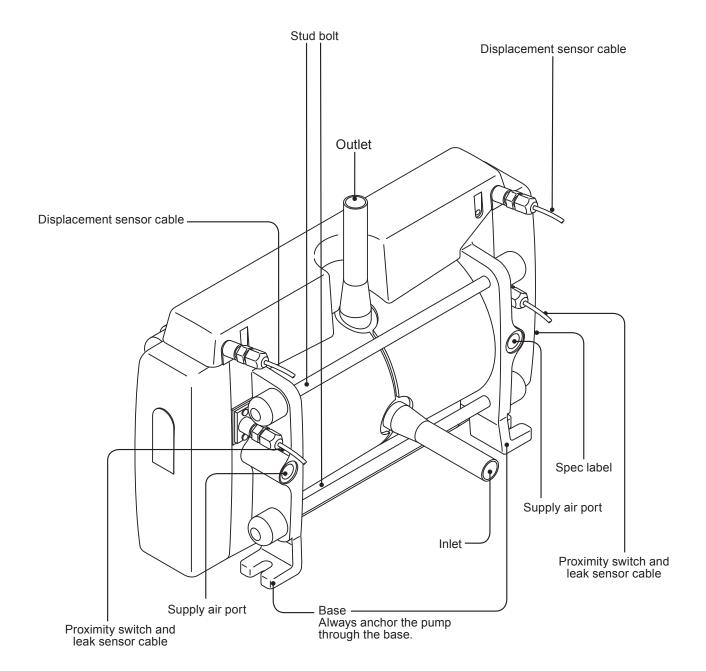
Feedback control

The LPC-1 controller adjusts supply-air pressure to keep a constant flow under pressure fluctuation.

Safety functions

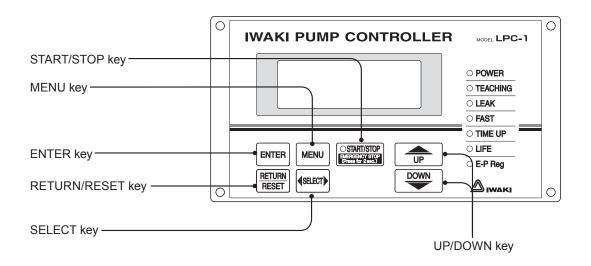
Leak detection

The LPC-1 controller stops the pump upon detecting a leak from bellows.


Emergency stop

The pump stops at any time when the START/STOP key is pressed and held (2 sec).

Interlock


The LPC-1 controller alarms over-seed operation when a pump runs over the maximum speed and keeps it within the limit (the max speed at each supply air pressure plus 20spm).

Pump

^{*}Do not clean the pump or nameplate with a solvent such as benzine or thinner.

■ Control panel

START/STOP key

Used to start/stop the pump in MANU mode. The START/STOP LED lights during operation. The pump stops at any time during MANU or AUTO mode if the key is pressed and held for 2 seconds (emergency stop) and returns to the main menu after 7 seconds.

A push of the START/STOP key will stop the pump in AUTO mode.

MENU key

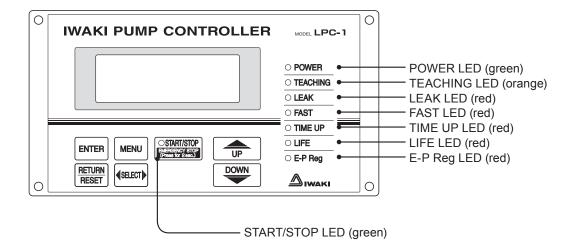
Used to display the main menu screen (if pushed once) or to point "1. PUMP MODEL" of the main menu (if pushed twice).

ENTER key

Used to determine setting.

RETURN/RESET key

Used to return to a previous menu or to reset an alarm.


SELECT key

Used to move through menu options and numerical digits or to select "YES" or "NO".

UP/DOWN key

Used to move through menu options, to change numerical values, or to select "YES" or "NO".

■ LEDs

POWER LED

Lights green as powered on.

TEACHING LED

Lights orange when determining origin via by selecting "2. TEACHING".

- *The screen will shows "TEACHING TIMEOUT!!" and the TEACHING LED will flush when origin was not determined in 10 seconds. In this case reset the alarm condition through "9. ALARM REST" and check for wrong wiring or closed discharge line before retry.
- *TEACHING ABORT!" will be shown on the screen if the MENU or RESET key is pressed during teaching. In this case, teaching is not completed. The controller is not in an alarm condition. Just retry to perform teaching.

LEAK LED

Lights red when the leak sensor detects a leak in the air chamber. The pump stops operation.

FAST LED

Lights red at or above the maximum speed at each supply air pressure and stops lightening below that speed.

TIME UP LED

Lights red when neither the right nor left proximity switch does not detect the connecting plate within the set period of time ("TIME UP ALARM"). Stops lightening when detecting the plate in time.

LIFE LED

Lights red when the reciprocation times accumulated in "TOTAL COUNT 1" exceeds the set number of times ("LIFE ALARM").

*"TOTAL COUNT 1" only is available for the LIFE ALARM.

E-P Reg LED

Lights red when:

- •The electropneumatic regulator is upset in feedback control (disconnection).
- ·Power voltage is out of range.
- •EEPROM reading/writing failure
- •Dishcharge line pressure does not reach a target rate within 5 seconds.

START/STOP LED

Lights green during operation.

Operating conditions

Pump stroke

Operation over the maximum stroke rate can take in a large amount of air during operation. Set the maximum allowable speed at each supply air pressure range as a fast alarm speed into the LPC-1 controller.

Supply air pressure	0.1-0.2MPa	0.21-0.3MPa	0.31-0.4MPa	0.41-0.5MPa
Maximum stroke rate	160spm	155spm	140spm	120spm

Supply air pressure range

Observe the allowable supply air pressure range at each liquid temperature below.

Liquid temperature	Supply air pressure
5-100°C	0.1-0.5MPa
101-150°C	0.1-0.4MPa
151-180°C	0.1-0.3MPa

^{*}Try to use the minimum allowable supply air pressure to protect the filter and bellows and reduce the risk of solution spray.

Liquid temperature range

Observe the allowable liquid temperature range of 5-180°C. Note sharp temperature fluctuation (heat shock) may reduce the life of the pump. Contact us for detail.

Liquid characteristics

■ Do not run the pump with the following liquid

- · Liquid that easily crystallizes
- Slurry
- Low conductivity hydrocarbon liquid
- *Crystallization or the delivery of slurry remarkably shorten the lives of valves and bellows.
- *Delivery of low conductivity hydrocarbon liquid can cause ESD damage.

■ Use care handling the following liquid:

- Stripper
- Solvent
- Hydrazine
- Fuming sulfuric acid
- *Some strippers cause cracks on the PFA bellows and piping, and therefore a warranty period is shortened. Contact us for detail.

^{*}A flow rate changes with supply air pressure. Use a regulator to keep the pressure constant.

^{*}The minimum operating pressure of the solenoid valve should meet the minimum allowable supply air pressure of each range.

Operation and Stoppage

During operation

Make sure a suction and a discharge line are fully opened.

■ When stopping the pump

- Before stopping the pump, release discharge line pressure. Otherwise, the bellows may deform.
- Do not close a discharge valve as stopping the pump, or an impact pressure may deform the bellows or check valves.

During stoppage

- Always check the specification of the double solenoid valve before installation. Some types (pressure centre types) are designed to pressurize both the right and left air chambers at the same time.
- Do not leave the pump with any chemical in the bellows for a long period. Some chemical gas can penetrate the bellows and corrode metal parts.

Air exhaust port

Do not narrow an air exhaust line (for example by reducing the tube I.D.). Or the residual pressure in the pump may deform the bellows.

*Always observe the minimum composite effective cross-sectional area. Do not extend the air exhaust port too far away from the solenoid valve (SV) or the quick exhaust valve (QEV). Otherwise, increased pipe resistance may break the limit.

Leak sensors

The sensors occasionally fails to detect leakage depending on operating condition. Contact us for detail.

Ambient temperature

Observe the allowable operating ambient temperature range of 0-40°C.

Pump surface temperature

Risk of burning. The surface temperature of the pump or pipe rises high along with liquid temperature in or right after operation. e.g. cylinder surface temperature rises up to 56°C when liquid temperature is 180°C and ambient temperature is 23°C.

Noise from pump

Exhaust noise accompanies pump operation. Provide noise insulation as necessary. e.g. a noise level rises up to 78.3db (A) at 120spm and 0.5MPa (supply air pressure).

Identification codes

Each code represents the following information.

FLP - 60 W H T 2 - 01

a. Series name

FLP-W: Medium & high liquid temperature (low pulsation)

b. Bellows size

c. Allowable liquid temperature range

H: 5-180°C

d. Pump connection (Inlet/Outlet)

T : Tube (standard)

e. Pump head-bellows connection

2 : Welded (standard)

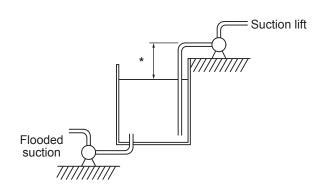
f. Special specifications

No symbol : Standard

01: Special specifications (01, 02...)

Installation

This section describes the installation of the pump, piping and wiring. Read through this section before work. To operate this pump, a 5-port solenoid valve and LPC-1 controller is needed. Always install QEVs (quick exhaust valves) to secure system safety. Purchase separately.


Points to be observed

Observe the following points when installing the pump.

- Be sure to turn off power to stop the pump and related devices before service is performed.
- Be careful for the power not to be turned on during work.
- If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.
- Do not install the pump in a flammable atmosphere.
- Do not lift the pump by gripping the right-and-left cylinder head covers or the top-andbottom covers. The pump can drop unintentionally as one of those parts breaks. Hold the pump by the stud bolts to lift it up.

Pump mounting

Mount the pump in flooded suction or suction lift application.

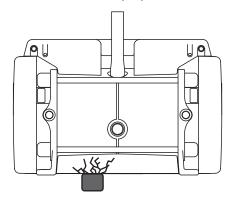
In flooded suction application:

Place the pump as close to the supply tank as possible.

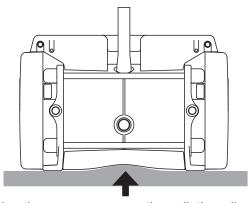
*Flooded suction is recommended for hot liquid transfer or for looped system.

In suction lift application:

Observe the maximum suction lift* (1m). Place the pump as close to the supply tank as possible.


*The suction lift is based on pumping clean water at ambient temperature and the maximum stroke rate, and varies with liquid characteristics, liquid temperature or suction line length. Contact us for detailed information.

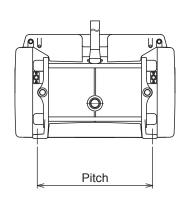
*Have a suction line shortest with the minimum number of bends.

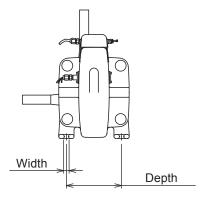

1 Select a location

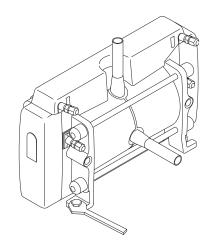
Select a level location, free from vibration, that won't hold liquid. Anchor the pump so it doesn't vibrate. See page 11 as well.

- *Flooded suction application is recommended.
- *Ovserve the maximum suction lift (1m) in suction lift application.

*Keep the pump footprint clear so nothing applies stress to the bottom cover. The cover, when deformed, may disturb the reciprocation of a connecting shaft.

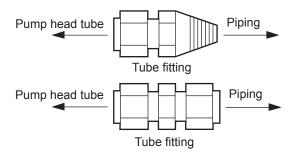

*When mounting the pump on a mounting rail, the rail may apply stress to the bottom cover. The cover, when deformed, may disturb the reciprocation of a connecting shaft.


2 Anchor the pump so it doesn't vibrate


Position the pump upright with the outlet upward and inlet sideways. Provide the pump with four holes (for M10 hex anchoring bolts w/ M10 plate washer) by the following pitch, width and depth.

*Use spring washer as necessary

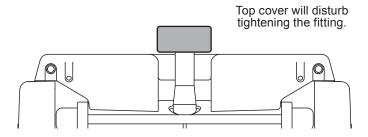
Pitch	Width	Depth	Hole I.D.
317 ⁺² mm	12mm	152±1mm	M10


Retighten the stud bolts

Tighten the stud bolts that are fixing the cylinder heads to 8.3N•m.

A leak results in operation if the stud bolts are loose.

Liquid line piping


PFA tubes (I.D. 22mm, O.D. 25mm) are originally equipped to inlet & outlet of the pump. Use applicable tube fittings for the connection with your piping system.

- *Select an appropriate tube fitting size. Both discharge- and suction-line I.D. should be larger than the pump outlet & inlet O.D.
- *General joints can be used, however, no leakage is allowed under hot liquid transfer or heat cycle.
- *Use measures to keep the pump connections free from stress.

NOTE

Do not cut the outlet too short, below the top cover. Or the tube fitting can not be tightened into the outlet.

Points to be observed

Air blow or flush a suction and a discharge tube to get rid of foreign matters prior to connecting with the pump.

Connect a suction and a discharge tube to the pump inlet and outlet via the tube fittings. Use measures to keep the pump connections free from stress such as weight and thermal expansion/

NOTE

contraction.

Be sure to secure each connection to prevent leakage and air ingress.

Suction line

■ Flooded suction

In flooded suction application, observe the minimum suction line I.D. (ø22mm), the suction line can be laid horizontally to the maximum length (4.4m) with no elbows.

*If five 90° elbows (0.5m resistance at each elbow) are used, the maximum length is shortened to 1.9m.

In suction lift application, observe the maximum suction lift.

*The suction lift differs with the liquid's characteristics, temperature and suction line length. For detailed information, contact us.

■ Filtration (suction line end)

Install a filter or strainer at the suction line end to prevent particles from entering the bellows. The filter or strainer should not increase piping resistance too much (observe the minimum composite effective cross-sectional diameter.).

NOTE

If wafer fragments enter the pump, they may get stuck in the bellows and eventually cause failure. If they clog the pump head valves, the discharge volume may reduce and the pumping operation may become unbalanced.

■ When installing a valve on the suction line:

Use a valve of a flow coefficient (Cv) of 8 or more. Otherwise, a suction-line resistance rises high together with flow pulsation, or the valve may easily be clogged with crystals. Make sure all valves on the suction line are opened to the full during operation.

NOTE

Operating the pump with a suction side valve close, negative pressure increases in the bellows and deforms the bellows inwardly.

Discharge line

■ When installing a valve on the discharge line:

When installing a valve in a discharge line, select a valve with an orifice equal to or larger than pipe I.D. A valve with a small orifice may increase the pipe resistance or easily be clogged with crystals. Always open valves during operation. Do not close the valve until the discharge pressure reaches "0" after the pump is stopped.

NOTE

Do not close a discharge valve right after stopping the pump. Impact pressure may deform the bellows.

■ Filtration (circulation)

Check a filtering area, filtering performance and effects on the flow before selecting a cycle filter. A desired flow may not be obtained if selection is wrong.

NOTE

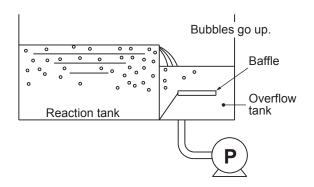
Wet the filter before use. A desired flow may not be obtained if the filter is dry. Filter dries up if it is unused for a long period. Read the instruction manual of the filter for details.

■ Filtration (discharge line end)

Install a filter or strainer in a discharge line not to release foreign matters or wafer fragments. The filter or strainer should not increase piping resistance too much (observe the minimum composite effective cross-sectional diameter.).

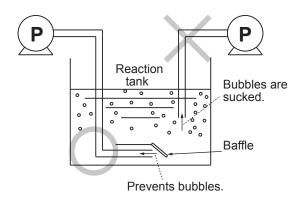
■ Depressurization at pump stop

When stopping the pump, be sure to release discharge pressure by opening the filter, the air vent valve or through a return circuit.


NOTE

Stopping the pump without releasing discharge pressure may deform the bellows.

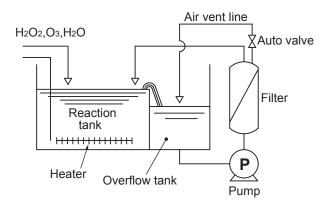
Degassing


Gas bubbles are generated when a strong acid is fed into the reaction tank or liquid is transferred through a narrow tube. If such bubbles enter the bellows, the pump runs dry, increasing stroke rate or disturbing liquid transfer. Take a proper step for degassing.

Plan A (Install a baffle to remove gas bubbles)

In flooded suction application

Install a baffle in a overflow tank to separate air from the liquid.



In suction lift application

Install a baffle to the bottom of the reaction tank.

And then place the end of suction line under the baffle to suck liquid only.

Plan B (Install an automatic valve)

Periodic degassing

Program an automatic valve to open periodically regardless of dry running. For example, the valve opens for ten seconds every two minutes.

- *Some filtering area may be too small to release air. Select a suitable filter size.
- *Program an open time according to the system performance.

Pinpoint degassing

Install an air detector at the pump inlet and set the auto valve to open timely.

Another detector at the pump outlet will help detect bellows rupture.

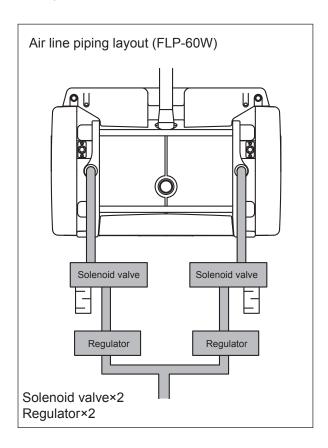
NOTE -

The stroke rate increment is a sign of dry running. Take one of the following step to expel air:

- Raise a pump speed with an open discharge line.
- Stop the pump once. And then restart.
- Empty and then fill the pump in operation.
- Increase the supply air pressure.

Air line piping

Before air piping

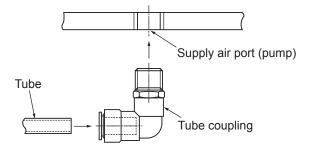

The FLP-60W needs a different supply air system from other lwaki's pneumatic pumps.

■ Solenoid valve (SV)

Our existing pneumatic pumps use one solenoid valve to supply air to both right-and-left air chambers in turn, but then the FLP-60W needs two 5-port solenoid valves at each air chamber. Plug the normally-open out port and exhaust port of the solenoid valves, or the pump will not run correctly.

■ Regulator

Provide a regulator to each solenoid valve. Use of just one regulator for both the valve can run the pump but then increases pulsation.


Points to be observed

Observe the following points when building up a supply air line.

- A fluctuation of supply air pressure affects the stroke rate and the flow rate. Install a regulator to maintain the supply air pressure constant.
- Install a safety valve to observe the supply air pressure range at each liquid temperature range. 0.1-0.5MPa at 5-100°C, 0.1-0.4MPa at 101-150°C and 0.1-0.3MPa at 151-180°C.
- Release the exhaust air into the open air. Narrowing the air exhaust port makes air less likely to be expelled. As a result the bellows may deform inwardly. Select necessary air devices with reference to the air line piping diagram on page 20.
- To reduce exhaust noise, release the exhaust air through the duct of the plant facility to the air, or attach silencers to exhaust ports.
- The air consumption increases as installing two or more pumps and the number of pumps increases. Optimise the air compressor capacity and air line I.D. taking account of composite effective cross-sectional area.
- Supply air should be free from moisture and dust. If the supply air is contaminated with water, oil or dust, the pump may fail in starting. If liquid enters the air chambers, the electrodes may detect it and sounds an alarm.
- Long, narrow or bent supply air tubing prevents air from being expelled from the air chamber, deforming the bellows inwardly, or stroke rate from increasing, reducing a liquid flow.

■ Supply air port I.D.

Supply air port I.D. of the pump is Rc 3/8". Connect an applicable tube coupling to the pump.

NOTE *

Secure each connection for the prevention of air leak.

Composite effective cross-sectional area

Composite effective cross-sectional area determines the performance of pressurization and depressurization in the air chambers. Small cross-sectional area prevents the contraction and expansion of the bellows and eventually causes a poor liquid flow and significant pulsation. Always keep the minimum composite effective cross-sectional area required for compression and decompression process separately. See below.

	Minimum composite effective cross-sectional area required
Compression	60mm²
Decompression	20mm²

■ Composite effective cross-sectional area required for decompression process

The composite effective cross-sectional area decreases as the number of pneumatic devices increases. Meet the above condition with the combination of a quick exhaust valve (QEV) with a silencer and a joint between the pump and the QEV (or the combination of a SV with a silencer and the air line between the pump and the SV when not using a QEV).

*Directory combine the silencer to the QEV and the QEV to the pump when using a QEV.

■ Composite effective cross-sectional area required for compression process

The composite effective cross-sectional area decreases as the number of pneumatic devices increases. Meet the above condition with the combination of a solenoid valve (SV), a quick exhaust valve (QEV) and the air line between the pump and the SV through the QEV (or the combination of the SV and the air line between the pump and the SV when not using a QEV).

Regulator performance, the air line between the regulator and the SV, and the air line between the compressor and the regulator also affects and compression. See "*Air line piping diagram*" section on page 29 for detail.

■ Effective cross-sectional area

1. Pneumatic devices

In the field of pneumatic devices, the term "Effective cross-sectional area" is used to indicate actual air flow. When air is sent through an air line, air cannot flow fully to the actual cross-sectional area due to piping resistance. The air flow increases as effective cross-sectional area becomes larger.

*For detail of effective cross-sectional area at each pneumatic device, see the catalogue issued by each manufacturers.

2. Composite effective cross-sectional area

Pneumatic devices are connected in series with the pump. Composite effective cross-sectional area of the entire system is calculated from the following formula.

$$\frac{1}{S^2} = \frac{1}{S1^2} + \frac{1}{S2^2} + \dots + \frac{1}{Sn^2}$$

S: Composite effective cross-sectional area (mm2)

Sn: Effective cross-sectional area of each pneumatic device (mm²)

See the catalogues issued by device/pipe manufacturers for each effective cross-sectional area.

Effective cross-sectional area on the exhaust side (OUT→EXH)

Quick exhaust valve (QEV-15V): 82mm².

Preventive measures against condensation

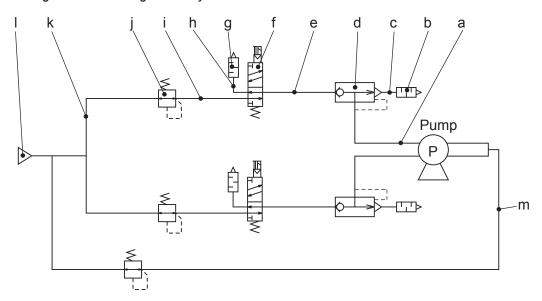
If condensation is likely to occur in the air lines between the pump and SV, take the following preventive measures.

- Reduce supply air pressure as much as possible (Reduce stroke rate.).
- Provide a heat insulator over the air line.
- Feed the heated and compressed air to the pump. Observe the temperature limits of pipe/tube materials, joints, SV and other component parts.

■ Recommended pneumatic devices

Select pneumatic devices with the following effective cross-sectional area. Note the minimum area of each device changes depending on whether a QEV is used or not.

When a quick exhaust valve is used...


-	Exhaust line	Supply air line
QEV (quick exhaust valve)	82mm²	69mm²
SV (solenoid valve)	50mm²	40mm²
Silencer	90mm²	-
Air line between the QEV and SV	-	40mm²

With no quick exhaust valve

	Exhaust line	Supply air line
SV (solenoid valve)	190mm²	145mm²
Silencer	90mm²	-
Air line between the pump and SV	91	mm²

Air line piping diagram

The diagram below is a general layout of an air-line.

a. Piping between the pump and QEV-15V

The pump has a Rc3/8" female thread and the QEV-15V has a Rc1/2" female thread for supply air line connection. Use a male reduced nipple as necessary.

b. Connection of a silencer (QEV)

Always use the same silencers to both right and left QEVs. Use of the SMC AN40-04 is recommended. Connect the silencer directory to the exhaust port of the QEV-15V.

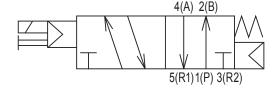
c. Piping between the QEV-15V and the silencer.

Always mount the silencer directory to the exhaust port of the QEV-15V without any joints.

d. Connection of the QEV-15V

Always use the same quick exhaust valves to both right and left air lines. Use of the QEV-15V is recommended.

e. Piping between the QEV-15V and the SV.


Always use the same pipe length (PFA, 3m or less) to both right and left air lines. When using the QEV, use a PFA tube of 10mm I.D. × 12mm O.D. When the QEV is not available, use a PFA tube of 14mm I.D. × 16mm O.D.

f. Solenoid valve

When the QEV is available: **If supply air pressure is 0.15MPa or more**, use the 5-port 2-position single solenoid valve of the SMC SY9140-5-04-X90 or the CKD 4GB410-15-A-3. **If supply air pressure is below 0.15MPa**, use the 5-port 2-position double solenoid valve of the SMC SY9240-5 or the 5-port 2-position single solenoid valve (external pilot operated type) of the SMC SY9140R-5 or CKD 4GB410-05-K-3. When the QEV is <u>NOT</u> available: Use the 5-port 2-position double solenoid valve of the SMC VFS6200-5F-06.

Plug the normally-open out port $2(B)^*$ and exhaust port $3(R_2)^*$. They are not used. Connect a supply air line to the normally-closed out port $4(a)^*$.

- *When the SMC 24VDC SY9140-5-04-X90 is used.
- *Air is exhausted through a normally-open out port when the pump is stopped.
- *Always use the same SV model to both the inlet and outlet air lines.

g. Connection of a silencer (SV)

Use of the SMC AN20-02 (when using a QEV) or the SMC AN40-04 (when not using a QEV) is recommended. Connect the silencer to the normally-closed exhaust port 5 (R₁) of the solenoid valve. *When the SMC 24VDC SY9140-5-04-X90 is used.

h. Piping between the SV and the silencer.

Do not use a tube for the connection. Use a male reduced bush and directory connect the silencer to the SV.

i. Piping between the solenoid valve and the regulator

Always use the same pipe length (PFA, 2m or less, 10mm I.D. × 12mm O.D.) to both right and left air lines.

j. Connection of a regulator

Always use the same regulator to both right and left air lines. Use of the SMC AR40-04 or CKD W4000-W is recommended. Be sure to keep the same set pressure between the right and left regulators (max allowable deviation is ±0.01MPa). Use the SMC PSE540-04 or the CKD PPE-P10A-H6-B pressure sensor in the regulator and monitor the supply air pressure with the LCP-1 controller. See "*Regulator set pressure confirmation (8. PRESSURE SENSOR)*" page 60 for detail.

k. Connection between the compressor and the regulator

Lay the supply air line shortest with a wider I.D. than regulator inlet (to ensure the minimum effective cross-sectional area.).

I. Connection of an air compressor

Air compressor must keep 0.1MPa or higher than the set pressure of the regulator during pump stop. If the supply air pressure from the compressor is the same or lower than the set pressure, a pressure drop causes discharge pulsation.

*Install an air tank (18L or more) in the purge air line (m) close to the regulator (j) when this condition is not satisfied in anyway. Discharge pulsation can be reduced.

m. Connection of a purge air line

A temperature of the displacement sensor may rise high along with liquid temperature. Connect a purge air line to the pump via the I.D.4mm air port (straight fitting) to deliver the necessary amount of air and keep the sensor temperature to 45°C or below. For example, purge 75NL/min or more to this line when liquid temperature is 180°C.

Electric wiring

Two 5-port double solenoid valves and the LPC-1 controller is required.

Points to be observed

Observe the following points during wiring work.

- Electrical work should be performed by a qualified electrician. Always observe applicable codes or regulations.
- Do not perform wiring work while the power is on. Otherwise, an electrical shock or short circuit may result. Be sure to turn off power before wiring work.
- Standard proximity switches can not be used when a flammable liquid such as solvent is pumped. The proximity switches must be in explosion-proof specifications. Contact us or your nearest dealer.
- Standard electrodes can not be used when a flammable liquid such as solvent is pumped. A spark in a solvent may cause a fire.

Installation

Lead wires

2m displacement sensor lead wires, 1m proximity switch lead wires and 1.8m leak sensor lead wires are originally built in the pump but then other lead wires for the connection between the controller and pneumatic devices are not provided. Purchase separately.

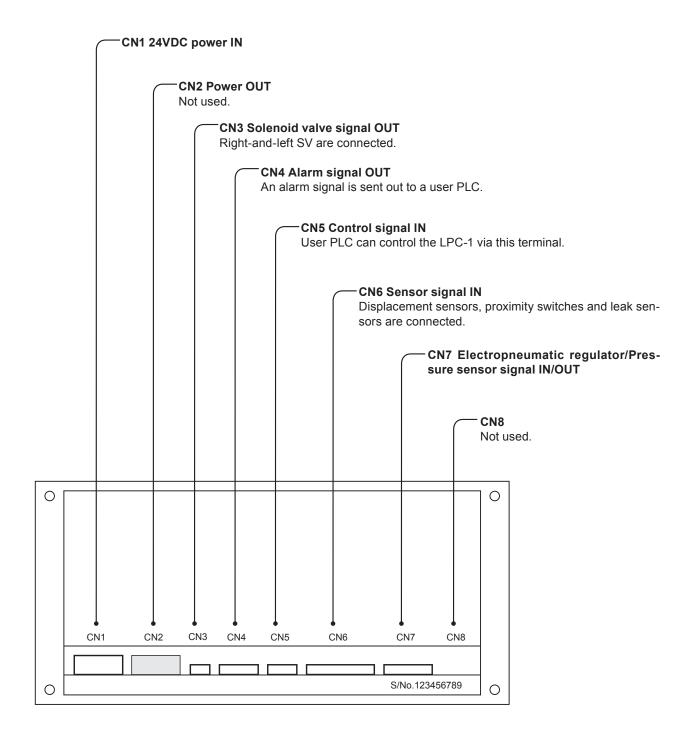
Lead wires	Required spec
LPC-1 controller power lead	24V 2A or more
Connection between the 5-port SV and the LPC-1 controller	24V 0.24A or more

■ Extension of leak sensor wires

Always keep resistance $5k\Omega$ or less. Otherwise, the leak sensor does not work properly.

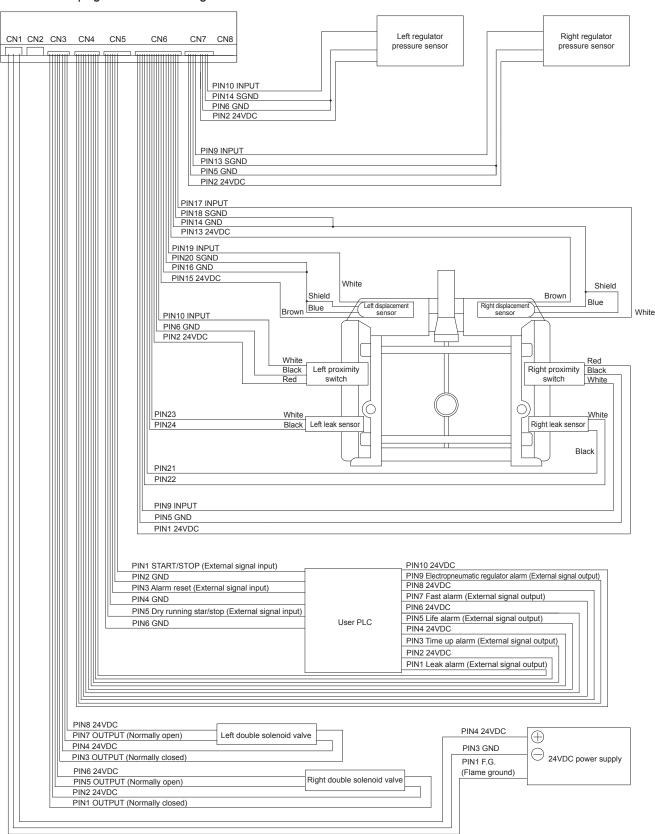
■ Installation of proximity switch wires

Do not lay on these wires in parallel with the power lead or combine them in a concentric cable (ex. 5 wires cable). Otherwise, system malfunction may result.

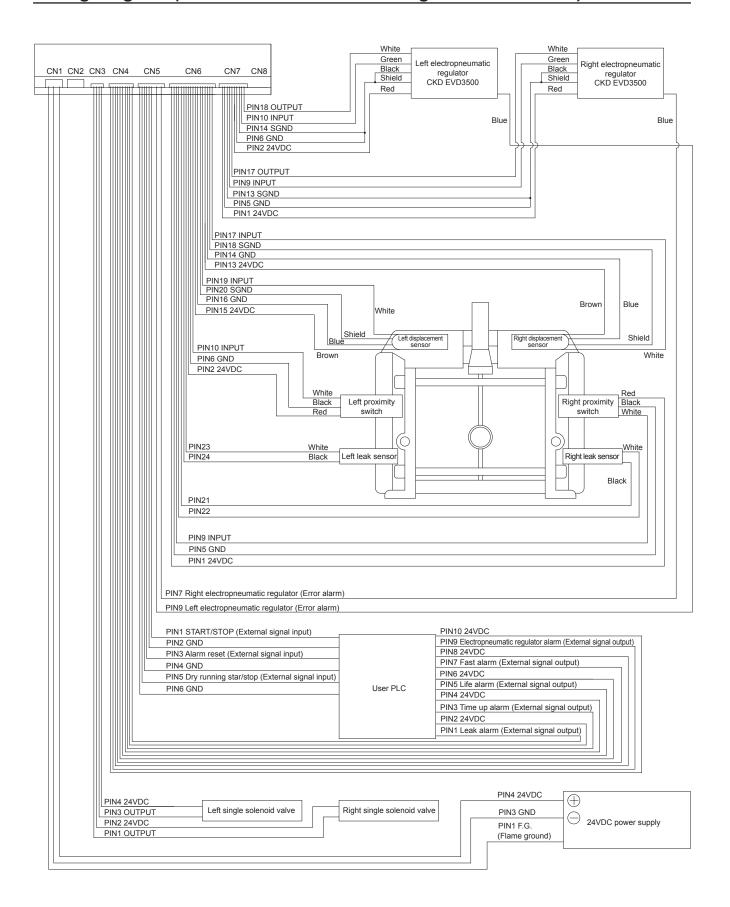

■ Extension of proximity switch wires

When extending a proximity switch wire, select the following cable spec depending on cable length.

Wire length	Wire spec
Shorter than 30m	0.3mm² or more
30m or longer	100Ω/km or less (conductor resistance)

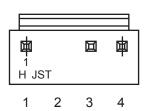

Preventative measures against noise

- Install a line filter in the AC power line.
- Provide a surge killer such as the CR or diode to inductive loads such as a solenoid valve and relay.
- Do not lay signal leads near the power lead.
- The shielded wire of the power lead should be connected to the F.G terminal of the 24VDC power supply.
- The shortest power lead is optimal.
- Do not share a power supply with a noise source such as an inverter or a motor.



Wiring diagram (operation with a double solenoid valve)

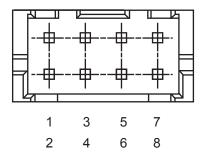
See the next page for use of a single solenoid valve.


Wiring diagram (feedback control with a single solenoid valve)

End terminals

■ Power line

CN1 Power voltage input (controller)

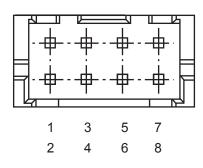

Connector #	CN1
Connector manufacturer	JST
Housing	VHR-4N
Contact	SVH-21T-P1.1
Applicable power lead	AWG #22-#18

Pin#	Assignment
1	F.G. (Flame Ground)
2	N.C. (Not used)
3	GND
4	+24V in (24VDC power input)

^{*}Capacity of the 24VDC power supply must be 2A or more.

■ Single solenoid valve

CN3 SV output (controller)

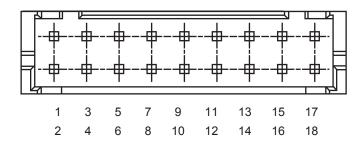


Connector #	CN3	
Connector manufacturer	JST	
Housing	PHDR-8VS	
Contact	SPHD-001T-P0.5	
Applicable power lead	AWG #26-#22	

Pin #	Assignment
1	Right SV control output
2	24VDC
3	Left SV control output
4	24VDC
5	Not used
6	Not used
7	Not used
8	Not used

■ Double solenoid valve

CN3 SV output (controller)



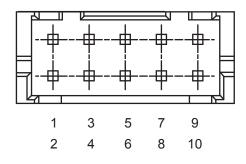
Connector #	CN3
Connector manufacturer	JST
Housing	PHDR-8VS
Contact	SPHD-001T-P0.5
Applicable power lead	AWG #26-#22

Pin#	Assignment
1	Right SV control output (Normally closed)
2	24VDC (Normally closed)
3	Left SV control output (Normally closed)
4	24VDC (Normally closed)
5	Right SV control output (Normally open)
6	24VDC (Normally open)
7	Left SV control output (Normally open)
8	24VDC (Normally open)

■ User PLC

CN4 Alarm output (controller)

Connector #	CN4
Connector manufacturer	JST
Housing	PHDR-18VS
Contact	SPHD-001T-P0.5
Applicable power lead	AWG #26-#22

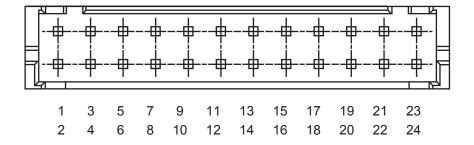

Pin #	Assignment
1	Leak alarm
2	24VDC
3	Time up alarm
4	24VDC
5	Life alarm
6	24VDC
7	Fast alarm
8	24VDC
9	Electropneumatic regulator
10	24VDC

^{*}Pin 11-18 are not used.

Output spec

Output type	Open collector
Max output current	50mA
Max applied voltage	30V
Insulation	Photocoupler isolation
Withstand voltage	500VAC/min (Breaking current: 0.5mA or below)
Insulation resistance	50MΩ or more (500VDC)

CN5 Control signal input (controller)

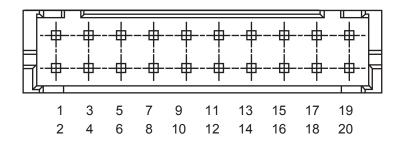

Connector #	CN5	
Connector manufacturer	JST	
Housing	PHDR-10VS	
Contact	SPHD-001T-P0.5	
Applicable power lead	AWG #26-#22	

Pin #	Assignment
1	START/STOP
2	GND
3	Alarm reset
4	GND
5	Dry running start/stop
6	GND
7	Electropneumatic regulator error
8	GND
9	Not used
10	Not used

^{*}Pin 9 and 10 are not used. Use the combination of pin 1 & 2, 3 & 4, and 5 & 6 at each purpose (assignment).

■ Proximity switch/Displacement sensor/Leak sensor

CN6 Sensor input (controller)


Connector #	CN6
Connector manufacturer	JST
Housing	PHDR-24VS
Contact	SPHD-001T-P0.5
Applicable power lead	AWG #26-#22

Pin#	Assignment
1	Right proximity switch 24VDC
2	Left proximity switch 24VDC
3	Not used
4	Not used
5	Right proximity switch GND
6	Left proximity switch GND
7	Not used
8	Not used
9	Right proximity switch input
10	Left proximity switch input
11	Not used
12	Not used
13	Right displacement sensor 24VDC
14	Right displacement sensor GND
15	Left displacement sensor 24VDC
16	Left displacement sensor GND
17	Right displacement sensr input
18	Right displacement sensor SGND
19	Left dishpacement sensor input
20	Left displacement sensor SGND
21	Right leak sensor (black lead)
22	Right leak sensor (white lead)
23	Left leak sensor (black lead)
24	Left leak sensor (white lead)

^{*}Pin 18 and 20 are to be connected with shield wires of the right and left displacement sensors.
*Miswiring of the proximity switch results in burnout.

■ Electropneumatic regulator or Pressure sensor

CN7 Electropneumatic regulator/pressure sensor input/output (controller)

Connector #	CN7
Connector manufacturer	JST
Housing	PHDR-20VS
Contact	SPHD-001T-P0.5
Applicable power lead	AWG #26-#22

1 Right electropneumatic regulator/pressure sensor 24VDC 2 Left electropneumatic regulator/pressure sensor 24VDC 3 Not used 4 Not used 5 Right electropneumatic regulator/pressure sensor GND 6 Left electropneumatic regulator/pressure sensor GND 7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used 20 Not used	Pin#	Assignment
3 Not used 4 Not used 5 Right electropneumatic regulator/pressure sensor GND 6 Left electropneumatic regulator/pressure sensor GND 7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	1	Right electropneumatic regulator/pressur sensor 24VDC
4 Not used 5 Right electropneumatic regulator/pressure sensor GND 6 Left electropneumatic regulator/pressure sensor GND 7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	2	Left electropneumatic regulator/pressure sensor 24VDC
5 Right electropneumatic regulator/pressure sensor GND 6 Left electropneumatic regulator/pressure sensor GND 7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	3	Not used
6 Left electropneumatic regulator/pressure sensor GND 7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	4	Not used
7 Not used 8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	5	Right electropneumatic regulator/pressure sensor GND
8 Not used 9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	6	Left electropneumatic regulator/pressure sensor GND
9 Right electropneumatic regulator/pressure sensor input 10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	7	Not used
10 Left electropneumatic regulator/pressure sensor input 11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	8	Not used
11 Not used 12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	9	Right electropneumatic regulator/pressure sensor input
12 Not used 13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	10	Left electropneumatic regulator/pressure sensor input
13 Right electropneumatic regulator/pressure sensor SGND 14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	11	Not used
14 Left electropneumatic regulator/pressure sensor SGND 15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	12	Not used
15 Not used 16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	13	Right electropneumatic regulator/pressure sensor SGND
16 Not used 17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	14	Left electropneumatic regulator/pressure sensor SGND
17 Right electropneumatic regulator/pressure sensor output 18 Left electropneumatic regulator/pressure sensor output 19 Not used	15	Not used
18 Left electropneumatic regulator/pressure sensor output 19 Not used	16	Not used
19 Not used	17	Right electropneumatic regulator/pressure sensor output
	18	Left electropneumatic regulator/pressure sensor output
20 Not used	19	Not used
	20	Not used

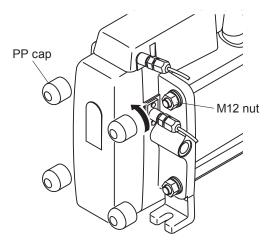
^{*}Use electropneumatic regulators for feedback control, otherwise use pressure sensors.

^{*}Connect the earth wire of the right pressure sensor to pin 5 & 13 and that of the left pressure sensor to pin 6 & 14 when not using the electropneumatic regulators.

Operation

This section describes pump operation and programming. Run the pump after pipework and wiring are completed.

Before operation


Always check the following items before the first-time operation or resuming operation after a long period of stoppage.

1	Check if electric wiring is made correctly. Check the wiring of proximity switches, leak sensors, solenoid valves, displacement sensors and electropneumatic regulators (pressure sensors). NOTE		
	A proximity switch may break. Always ensure correct wiring.		
2	Check if air piping is made correctly.		
3	Check if the pump is anchored securely.		
4	Check if liquid piping is made correctly.		
5	Check if a suction and a discharge line is open.		
6	Check for a liquid level in the supply tank.		
7	Check if the filter is wet.		
	See manufacturer's manual for the handling of filter.		

8 Tighten stud bolts.

Stud bolts may loosen during storage or transit due to temperature fluctuation. Loose stud bolts can cause an air leak from the joint of the cylinder head and pump head. Be sure to tighten the stud bolts to 8.3N•m before operation.

*Unscrew the PP caps by turning anticlockwise and tighten the M12 nuts.

Programming menu

Operation at each mode is individually set and controlled by the LPC-1 controller. Make proper setting to ensure optimal operation. The controller will show version information for 3 seconds after power is turned on and then nine main-menu options. Sub-menu options will be available at each main-menu options.

ava	nable at each main-me	eriu opiioris.	
	Menus	Setting	References
1. PUMP MODEL		Pump model selection	44 page
2. TEACHING		Start of teaching (displacement sensors)	45 page
3. F	UMP DRIVE	Start of operation in MANU mode	46 page
4. SETTING		Operational behaviour at each mode	
	1. QUANT.CONST.CTRL	Feedback control	51 page
	1. FLOW.QUANTITY	Target flow rate	52 page
	2. E-P REGURATOR	Starting air pressure and the top/bottom pressure limits	53 page
	3. 1 shot d CAPA	Liquid volume per shot	54 page
	2. ALARM	Alarm output	
	1. TIME UP ALARM	Time setting for the detection of the connecting plate	F4 none
	2. FAST ALARM	spm setting for speed compensation	54 page
	3. LIFE ALARM	Pump-shot setting for a reminder of the end of service life	
	3. SET VALUE CONFIRM	Setting confirmation	
	1. STROKE LENGTH	Stroke length confirmation	
	2. PUMP MODEL	Pump model confirmation	56 page
	3. MANU or AUTO	Manual/Auto model confirmation	
	4. DRIVE MODE	Drive mode confirmation	
	4. RESET ALL DATA	Return to the default setting	57 page
5. K	EY PROTECT	Keypad lock for the prevention of erroneous operation	
	1. PROTECT	Activation	58 page
	2. PROTECT CANCEL	Deactivation	
6. T	OTAL COUNT	Total number of shots confirmation/cancellation	
	1. TOTAL COUNT1	Confirmation of TOTAL COUNT1	
	2. TOTAL COUNT2	Confirmation of TOTAL COUNT2	50 page
	3. COUNT RESET1	Cancellation of TOTAL COUNT1	59 page
	4. COUNT RESET2	Cancellation of TOTAL COUNT2	
	5. COUNT RESET3	Confirmation of TOTAL COUNT3	
7. N	IANU or AUTO	Selection between manual and automatic modes	46,49 pages
8. F	RESSURE SENSOR	Monitoring of the supply air pressures by the right-and-left pressure sensors in the regulators or the supply air lines.	60 page
9. A	LARM RESET	Alarm output cancellation with the LED out	61 page

Basic key operation

Operation control or setting with keypad operation.

Main menu

The main menu has 9 options. Move the cursor between the options with the UP and DOWN keys and push the ENTER key to make a selection. The sub-menu options also can be selected in the same way. The following shows the steps to enter the AUTO mode through basic key operation.

- >1. PUMP MODEL
 - 2. TEACHING
 - 3. PUMP DRIVE
 - 4. SETTING
 - 5. KEY PROTECT
 - 6. TOTAL COUNT
 - 7. MANU or AUTO
 - 8. PRESSURE SENSER
 - 9. ALARM RESET
- Move the cursor to "7. MANU or AUTO" with the UP and DOWN keys.
 - 5. KEY PROTECT
 - 6. TOTAL COUNT
 - >7. MANU or AUTO
 - 8. PRESSURE SENSOR
- Push the ENTER key. A sub-menu option will show up.

MANU or AUTO

[MANU]AUTO

Use the select key to choose "MANU" or "AUTO".

The start/stop of the pump is controlled by the LPC-1 controller in MANU mode or a user PLC in AUTO mode.

Push the ENTER key to determine the setting.

MANU or AUTO

AUTO SET OK!

Pump operation

The start/stop of the pump is controlled by the LPC-1 controller in MANU mode or a user PLC in AUTO mode.

Points to be observed

Before operation in your system, conduct a trial run with pure water (or chemical liquid) to flush out particles or to measure metal ion level.

Pump model selection

Select a pump model which comes under the control of the LPC-1 controller.

1 Select "1. PUMP MODEL" and push the ENTER key.

- >1. PUMP MODEL
 - 2. TEACHING
 - 3. PUMP DRIVE
 - 4. SETTING

2 Select "FLP-60W" and push the ENTER key.

"FLP-60W SELECT OK!" appears on the screen.

- *Always choose a correct model. Otherwise, malfunction results.
- *The controller refuses the start of operation and asks for the selection if a model hasn't been selected, yet.

>1. FLP-60W 5. FLP-***

- 2. FLP-*** 6. FLP-***
- 3. FLP-*** 7. FLP-***
- 4. FLP-*** 8. FLP-***

3 Check if the selection is correct and push the ENTER key.

The main menu shows up.

PUMP SELECT

FLP-60W SELECT OK!

Teaching

The right-and-left displacement sensor measures the stroke length of the pump to determine the origin position (0 stroke length) during teaching behaviour. Teaching is necessary to keep synchronization between the pump and the controller.

NOTE -

- The pump will not work properly if teaching is not performed.
- After teaching is performed, select "4. SETTING" (main-menu), "3. SET VALUE CONFIRM" (sub-menu) and then "1. STRIKE LENGTH" to check the measured stroke length. The length should be within the range of about 20-21mm if it is done correctly. Other length such as 500mm suggests miswiring of the displacement sensors.
- Measured stroke length changes depending on operation conditions due to existence of a spring in the connecting shaft. But then it will not adversely affect the pump operation as long as the origin position is determined.
- 1 Select "2. TEACHING" and push the ENTER key.
- 1. PUMP MODEL
- >2. TEACHING
 - 3. PUMP DRIVE
 - 4. SETTING
- **2** Use the UP and DOWN key (or the SELECT key) to chose "YES" and push the ENTER key.

The bellows starts to move from the centre to the left until the right proximity switch detects the right connecting plate and stops for 1 second, and then starts to move to the right until the left proximity switch detects the left connecting plate and stops for 1 second. Again moves to the left and stops for 1 second and then return to the centre as finishing this teaching behaviour.

*The LPC-1 controller with default setting automatically performs teaching in advance of the first-time operation.

The right display will show up with "TEACHING LED" on during teaching behaviour.

TEACHING START?

[YES] NO

TEACHING MODE

TEACHING. . . .

The right display will show up with "TEACHING LED" off when teaching is completed successfully.

TEACHING MODE

TEACHING OK!

The right display will show up with "TEACHING LED" flashes when the right (or left) proximity switch does not detects the right (or left) connecting plate within 10 seconds during teaching.

TEACHING MODE
TEACHING TIMEOUT!!

The right display will show up with "TEACHING LED" off when the MENU or RESET key is pressed during teaching. Push any key other than the START/STOP key to return to the main menu.

TEACHING MODE
TEACHING ABORT!!

3 Push the ENTER or MENU key if teaching is completed successfully.

Manual operation

Run or stop the pump by the LCP-1 controller and key operation.

■ Operation start

1 Select "7. MANU or AUTO" in the main menu and push the ENTER key.

- 5. KEY PROTECT
- 6. TOTAL COUNT
- >7. MANU or AUTO
 - 8. PRESSURE SENSOR

2 Select "MANU" and push the ENTER key.

MANU or AUTO

[MANU] AUTO

MANU or AUTO

MANU SET OK!

3 Push the ENTER key or the MENU key. The main menu shows up.

- 4 Select "3. PUMP DRIVE" in the main menu and push the ENTER key.
 - 1. PUMP MODEL
 - 2. TEACHING
 - >3. PUMP DRIVE
 - 4. SETTING
- Use the UP and DOWN key (or the SELECT key) to choose "YES" and push the ENTER key if feedback control is required. Or choose "No".

See page 52 for feedback control. When "No" is chosen, the controller returns to the main menu.

QUANTITIY CONSTANCY CONTROLLED?

> [YES] NO

- Use the UP and DOWN key (or the SELECT key) to choose "YES" and push the ENTER key to start operation.
 - The display changes depending on whether feedback control is chosen or not.
 - Pushing the START/STOP key with the main menu display, the pump starts to run in the chosen way once this setting is completed.

When feedback control is selected...

LOW PULSE DRIVE QUANTITY CONST START? [YES] NO

When feedback control is not selected...

LOW PULSE DRIVE

START? [YES] NO

■ Operation stop

Points to be observed

- Before stopping the pump, release the pressure from the discharge line. Otherwise, the bellows may deform.
- Do not close a discharge valve as stopping the pump. An impact pressure may deform the bellows or a connecting plate.
- 1 Push the START/STOP key.
- 2 Select "YES" and push the ENTER key.

The display changes depending on whether feedback control is chosen or not. The main menu shows up when the pump stops.

When feedback control is selected...

LOW PULSE DRIVE QUANT. CONTST. CTRL. STOP? [YES] NO When feedback control is not selected...

LOW PULSE DRIVE

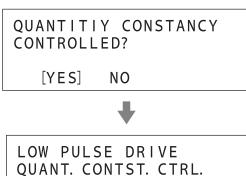
STOP?
[YES] NO

NOTE -

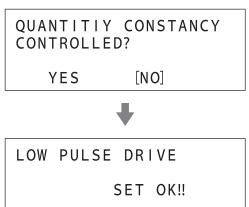
If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems. See **"1. Troubleshooting"** as necessary.

Run or stop the pump with the external signal (Pin5 dry running start/stop signal) from user LPC-1.

- **1** Select "7. MANU or AUTO" in the main menu and push the ENTER key.
 - 5. KEY PROTECT
 - 6. TOTAL COUNT
 - >7. MANU or AUTO
 - 8. PRESSURE SENSOR


2 Select "AUTO" and push the ENTER key.

The controller returns to the main manu.


- **3** Select "3. PUMP DRIVE" and push the ENTER key.
- 1. PUMP MODEL
- 2. TEACHING
- >3. PUMP DRIVE
 - 4. SETTING
- **4** Use the UP and DOWN key (or the SELECT key) to choose "YES" and push the ENTER key if feedback control is required. Or choose "No".
 - The display changes depending on whether feedback control is chosen or not.
 - After this setting is completed, the pump runs at any time when the pin 5 dry running start/stop signal is entered.
 - *AUTO operation can be stopped by key operation. See page 46 for detail.

When feedback control is selected...

SET OK!!

When feedback control is not selected...

Display information

■ Operation display

*Push the RETURN/RESET key to turn off the Alarm LED if it lights.

A calculated flow rate by liquid volume per shot and the number of shots is shown here.

Stroke rate

Stroke rate

FLP-60W PUMP

Spm L: MPa R: MPa

MANU MODE

Selected mode

■ Total count display

Total number of pump shots will be shown if the DOWN key is pressed once. A push of the UP key calls back the operating display.

Speed compensation (AUTO mode)

The LPC-1 controller reduces pump speed to the compensation speed (the maximum stroke rate at each supply air pressure plus 10spm) when it exceeds the fast alarm speed (the maximum stroke rate above plus 20spm).

*The controller changes the SV to meet the compensation speed with or without input from the proximity switches.

■ External input for compensation speed operation

In AUTO mode, input of the external signal (dry running start/stop signal) from user PLC to the LPC-1 controller can adjust the pump speed to the compensation speed. Note teaching behaviour is automatically made right before speed compensation.

*Speed compensation will work when the pump speed exceeds the fast alarm speed.

*Always input the dry running start/stop signal while the PIN1 START/STOP signal is inputted.

Operation programming

Select "4. SETTING" for programming the feedback control (1. QUANT.CONST.CTRL), alarm output behaviour (2. ALARM), setting/mode confirmation (3. SET VALUE CONFIRM) and defaulting the LPC-1 (4. RESET ALL DATA).

1 Select "4. SETTING" in the main manu and push the ENTER key.

Sub-menu options will appear.

- 1. PUMP MODEL
- 2. TEACHING
- 3. PUMP DRIVE
- >4. SETTING
- 2 Select one of the options according to programming to be made and push the ENTER key.

Each selection will show further options.

SETTING

>1. QUANT. CONST. CTRL

- 2. ALARM
- 3. SET VALUE CONFIRM

QUANT. CONST. CTRL > 1. FLOW QUANTITY

- 2. E-P REGURATOR
- 3. 1shot d CAPA

Feedback control (4. SETTING: QUANT. CONST. CTRL)

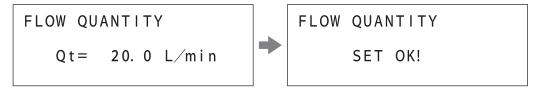
Program a target flow rate, the set pressure of the electropneumatic regulator and liquid volume per shot.

■ Target flow setting

Set a target flow rate to the LPC-1 controller.

1 Select "1. QUANT. CONST. CTRL" (feedback control setting) in the sub menu and push the ENTER key.

Further options will show up.


2 Select "1. FLOW QUANTITY" (target flow rate setting) and push the ENTER key.

QUANT. CONST. CTRL >1. FLOW QUANTITY 2. E-P REGURATOR 3. 1 shot d CAPA

3 Set a target flow rate and push the ENTER keys.

The target flow rate is set to 20.0mL/min with default setting. Move between digits with the SELECT key and change numerical values with the UP and DOWN keys.

*Observe the possible maximum discharge capacity at each supply air pressure (See the attached performance curves.). Otherwise, malfunction may result.

4 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the feedback control setting sub-menu or the MENU key to return to the main menu.

■ Electropneumatic regulator setting

Set the starting pressure, minimum/maximum allowable supply air pressure to the LPC-1 controller.

1 Select "2. E-P REGURATOR" (electropneumatic regulator setting) in the sub menu and push the ENTER key.

QUANT. CONST. CTRL
1. FLOW QUANTITY
>2. E-P REGURATOR
3. 1 shot d CAPA

2 Select each setting option and push the ENTER key.

E-P REGURATOR
>1. START PRESSURE
2. MIN PRESSURE
3. MAX PRESSURE

3 Set a starting, the min/max supply air pressure separately and push the ENTER keys.

The default setting for the regulator is as follows. Move between digits with the SELECT key and change numerical values with the UP and DOWN keys.

- *Note a starting supply air pressure must be at or higher than the min supply air pressure and lower than the max.
- *Observe the possible maximum supply air pressure of 0.5MPa.
- *The starting supply air pressure means the set pressure of the regulators.

The LPC-1 default setting for the electropneumatic regulator

The Li C-1 deladit setting for the electrophedinatic regulator		
Starting supply air pressure	0.2MPa	
Minimum allowable supply air pressure	0.2MPa	
Maximum allowable supply air pressure	0.5MPa	

E-P REGURATOR START PRESSURE

Sp=0. ** Mpa

FLOW QUANTITY

SET OK!

4 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the feedback control setting submenu or the MENU key to return to the main menu.

■ Liquid volume per shot setting

Set the liquid volume per shot to the LPC-1 controller. The flow rate on the operation display is calculated by multiplying the liquid volume by the number of pump shots.

1 Select "3. 1 shot d CAPA" in the sub menu and push the ENTER key.

QUANT. CONST. CTRL
1. FLOW QUANTITY
2. E-P REGURATOR
>3. 1shot d CAPA

2 Set liquid volume per shot and push the ENTER keys.

Move between digits with the SELECT key and change numerical values with the UP and DOWN keys. *The default setting is 205.0cc/shot.

Push the ENTER, RESET, SELECT, UP or DOWN key to return to the feedback control setting sub menu or the MENU key to return to the main menu.

Alarm output (4. SETTING: ALARM)

Program alarm output behaviours of Time-up, Fast and Life alarms.

■ Time up alarm setting (Default: 20sec)

The LPC-1 controller outputs the time-up alarm to the user PLC and the TIME UP LED lights when either right or left proximity switch does not detect the connecting plate within the set time. The signal output and LED lightening continues unless the detection is made in time.

■ Fast alarm setting (Default: 140spm)

The LPC-1 controller outputs the fast alarm signal to user PLC and the FAST LED lights when the pump speed exceeds the maximum stroke rate at each supply air pressure during feedback control. The signal output and LED lightening continues unless the pump speed falls to the maximum stroke rate or below.

*The LPC-1 controller stops feedback control if the pump speed continues rising and exceeds the fast alarm speed (the max stroke rate at each supply air pressure plus 20spm). Eight more shots later, the controller performs teaching and speed compensation (see page 50) to reduce spm to the compensation speed (the max stroke rate above plus 10spm).

■ Life alarm setting (Default: 99,999,999 counts)

The LPC-1 controller outputs the life alarm signal to the user PLC and the LIFE LED lights when reciprocation times (TOTAL COUNT1) exceeds the set number of times (max 999,999,999).

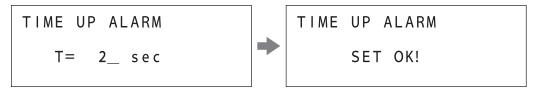
*Alarm output cancellation (see page 61) just turns off the LIFE LED temporarily. Reset the accumulated data in the TOTAL COUNT1 before restarting operation, or the LED turns on again in operation. See "Total number of pump shots confirmation/cancellation" on page 59 for detail.

- **1** Select "4. SETTING" and push the ENTER key. Sub-menu options will appear.
- 2 Select "2. ALARM" and push the ENTER key. Further options will appear.

SETTING

- 1. QUANT. CONST. CTRL
- >2. ALARM
 - 3. SET VALUE CONFIRM

3 Select one of the options according to programming to be made and push the ENTER key.


ALARM

>1. TIME UP ALARM

- 2. FAST ALARM
- 3. LIFE ALARM

Set alarm behaviour and push the ENTER keys.

Move between digits with the SELECT key and change numerical values with the UP and DOWN keys.

5 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the alarm setting submenu or the MENU key to return to the main menu.

Setting confirmation (4. SETTING: SET VALUE CONFIRMATION)

Setting details can be checked through "3. Set value confirmation".

Stroke length confirmation

The LPC-1 controller shows stroke length measured through teaching.

LEFT: Stroke length measured with the left displacement sensor.

RIGHT: Stroke length measured with the right displacement sensor.

AVE: Average stroke length measured by the right and left displacement sensors.

Pump model

The LPC-1 controller shows the selected pump model code.

MANU or AUTO

The LPC-1 controller shows the current operation mode of MANU or AUTO.

Drive mode

The LPC-1 controller shows whether operation is with feedback control or not. "QUANT.CONST.CTL" represents operation with feedback control and "LOW PULSE MODE" represents no feedback control.

1 Select "3. SET VALUE CONFIRM" in the sub menu and push the ENTER key.

SETTING

- 1. QUANT. CONST. CTRL
- 2. ALARM
- >3. SET VALUE CONFIRM

2 Select one of the options according to programming to be made and push the ENTER key.

SET VALUE CONFIRM >1. STROKE LENGTH 2. PUMP MODEL 3. MANU or AUTO

3 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the confirmation submenu or the MENU key to return to the main menu.

Default setting (4. SETTING: RESET ALL DATA)

Default the LPC-1 controller through the following procedure below.

1 Select "4. RESET ALL DATA" in the sub menu and push the ENTER key.

SETTING >4. RESET ALL DATA

2 Select "YES" and push the ENTER key.

RESET ALL DATA?

[YES] NO

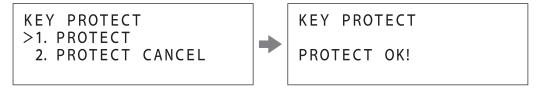
3 Push the ENTER, RESET, MENU, SELECT, UP or DOWN key to return to the main menu.

Keypad lock (5. KEY PROTECT)

Keypad lock can be active for the prevention of erroneous key operation.

NOTE

Any key operation is not acceptable when the keypad lock is active. In an emergency, press and hold the start/stop key for 2 seconds. The pump enters a wait state and stops running.


■ Keypad lock activation

- Select "5. KEY PROTECT" and push the ENTER key. Sub-menu options will appear.
- >5. KEY PROTECT
 - 6. TOTAL COUNT
 - 7. MANU or AUTO

8. PRESSURE SENSOR

- 2 Select "1. PROTECT" and push the ENTER key.

Any key operation is disabled.

3 Push the ENTER, RESET, SELECT, UP or DOWN key to return to keypad lock submenu or the MENU key to return to the main menu.

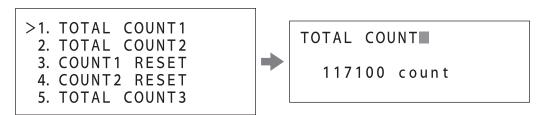
Keypad lock deactivation

- **1** Select "5. KEY PROTECT" and push the ENTER key. Sub-menu options will appear.
- 2 Select "2. PROTECT CANCEL" and push the ENTER key.

All key operation is enabled.

KEY PROTECT
PROTECT CANCEL OK!

3 Push the ENTER, RESET, SELECT, UP or DOWN key to return to keypad lock submenu or the MENU key to return to the main menu.

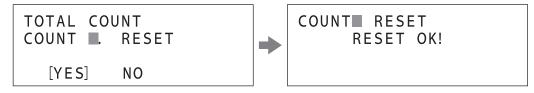

Total number of pump shots confirmation/cancellation (6. TOTAL COUNT)

Default the accumulated reciprocation times in the TOTAL COUNT1 and 2 through the following procedure as necessary (one reciprocation time means two pump shots.). TOTAL COUNT3 can not be defaulted.

*TOTAL COUNT 2 and 3 are not linked to the alarm output. The alarm output works based on the accumulation in TOTAL COUNT1. The LPC-1 controller outputs the life alarm signal to the user PLC and the LIFE LED lights when reciprocation times (TOTAL COUNT1) exceeds the set number of times (max 999,999,999).

■ Confirmation

- **1** Select "6. TOTAL COUNT" and push the ENTER key. Sub-menu options will appear.
- 5. KEY PROTECT
- >6. TOTAL COUNT
 - 7. MANU or AUTO
 - 8. PRESSURE SENSOR
- 2 Select one of TOTAL COUNT1, 2, or 3 and push the ENTER key.



3 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the confirmation/cancellation sub-menu or the MENU key to return to the main menu.

■ Cancellation

- **1** Select "COUNT1 RESET" or "COUNT2 RESET" in the sub menu and push the ENTER key.
- 1. TOTAL COUNT1
- 2. TOTAL COUNT2
- >3. COUNT1 RESET
 - 4. COUNT2 RESET

2 Select "YES" and push the ENTER key.

3 Push the ENTER, RESET, SELECT, UP or DOWN key to return to the confirmation/cancellation sub-menu or the MENU key to return to the main menu.

Regulator set pressure confirmation (8. PRESSURE SENSOR)

The greater difference between the right and left regulator set pressure, the more pulsation it becomes. Be sure to keep the same set pressure to the right and left regulators (max allowable deviation is ± 0.001 MPa).

1 Select "8. PRESSURE SENSOR" and push the ENTER key.

When a pressure sensor or a regulator is provided and the pump is running...

- 5. KEY PROTECT
- 6. TOTAL COUNT
- 7. MANU or AUTO
- >8. PRESSURE SENSOR

LEFT : 0. MPa RIGHT: 0. MPa

When a pressure sensor or a regulator is not provided...

PRESSURE SENSOR

LEFT : ERROR RIGHT: ERROR

When an electropneumatic regulator is provided and the pump stops...

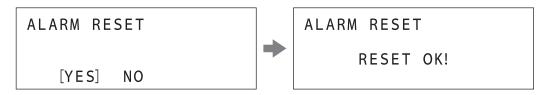
PRESSURE SENSOR

LEFT: 0.00 MPa RIGHT: 0.00 MPa

2 Push the ENTER, MENU, RESET or SELECT key to return to the main menu.

Alarm output cancellation (9. ALARM RESET)

Stop the alarm output and turn off the time-up, fast or life LED through the following procedure.


1 Select "9. ALARM RESET" and push the ENTER key in the main manu.

>9. ALARM RESET

2 Select "YES" and push the ENTER key.

The LPC-1 controller stops outputting the alarm signal and turn off the time-up, fast or life alarm LED.

*The LPC-1 controller outputs the life alarm signal to the user PLC and the LIFE lights when reciprocation times accumulated in TOTAL COUNT1 exceeds the set number of times (max 999,999,999). Default the accumulation in TOTAL COUNT1 to cancel the life alarm.

3 Push the ENTER, MENU, RESET or SELECT key to return to the main menu.

NOTE

The LPC-1 controller resumes alarm output and turns on an appropriate LED two minutes after the cancellation when an error condition is not solved.

Maintenance

This section describes troubleshooting, inspection, specification and dimensions.

Points to be observed

Observe the following points during maintenance work.

- Observe instructions in this manual for maintenance, inspection, dismantlement and assembly. Do not dismantle the pump beyond the extent of the instructions.
- Always wear protective clothing such as an eye protection, chemical resistant gloves, a
 mask and a face shield during disassembly, assembly or maintenance work. The specific solution will dictate the degree of protection. Refer to MSDS precautions from the
 solution supplier.
- Solution in the discharge line may be under pressure. Release the pressure from the discharge line before disconnecting plumbing or disassembly of the pump to avoid solution spray.
- Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed.
- If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.
- Before stopping the pump, release the pressure from the discharge line. Otherwise, the bellows may deform.
- Do not close a discharge valve as stopping the pump. An impact pressure may deform the bellows or a connecting plate.

Troubleshooting

First check the following points. If the following measures do not help remove problems, contact your distributor.

States	Possible causes	Points to be checked	Solutions
	Switch-over failure of the		Inspect, repair or replace
	solenoid valve (SV)		as necessary.
		-	Use a QEV if corrosive
			gas affects the SV.
	Improper wiring or the dis-	o If wiring is done according	 Inspect/correct wiring.
	connection of the SV, dis-	to each device manual.	
The pump does not	placement sensors or prox-	Air lines and electrical	Replace as necessary.*
run.	imity switches.	wiring	
	Supply air pressure is too	o Set pressure of the regu-	Observe the minimum
	low to operate the SV.	lator (LPC-1 controller)	operating pressure of the
			SV.
		o Minimum operating pres-	Adjsut the minimum oper-
		sure of the SV	ating pressure of the SV
			as necessary.

^{*}Solutions marked with * are conducted by us.

States	Possible causes	Points to be checked	Solutions
	Bellows rupture	o Supply air pressure	Replace the bellows if
	(Leak alarm output)	○ Stroke rate	damaged.*
		○ Liquid temperature	Observe pump spec and
		o If discharge line pressure	composite effective cross
		is released as soon as the	sectional area.
		pump stops.	
		○ Air line I.D and length	
		Closed suction line	
	Rising discharge pressure	○ Filter for clogging	Check or replace the filter
			as necessary.
		○ If a filter is wet.	Wet the filter.
The pump does not		Closed discharge line	Open the discharge line.
run.	Supply air pressure or air	o Minimum operating pres-	Observe the minimum
Turi.	flow is too low.	sure of the SV	operating pressure.
		○ If proper air line I.D. is	Adjsut the regulator set
		selected if two or more	pressure as necessary.
		pumps are installed.	
	Leak sensor malfunction	○ Wet pump	Keep the pump dry.
		o If supply air is dry.	Keep the supply air dry.
	Incorrect air line piping	o Both right and left air lines	Correct as necessary.
	Incorrect electrical wiring	o If teaching is performed.	Correct as necessary.
	Keypads are locked.	o If keypad lock is active.	Deactivate keypad lock.
	MANU/AUTO mode selec-	Operation mode setting	Correct as necessary.
	tion is wrongly done.	(LPC-1 controller)	
	Solenoid valve failure	o If the SV switches correctly.	· · · · · · · · · · · · · · · · · · ·
	A check valve is clogged	A check valve for clogging	_
	with foreign matters.		a suction line. Clean or
Liquid can not be			replace the pump.*
pumped up.		Closed suction line.	Open the suction line.
' '	Pump check valve is worn.	o A valve on the suction line	_
			a suction line. Clean or
	A 1155		replace the pump.*
	A different pump model is	Pump model selection	Set a correct pump model
	set to the LPC-1 controller.	(LPC-1 controller)	to the controller.
	Teaching is not performed.	○ If teaching is done.	Perform teaching.
	Different set pressure between	Regulator set pressure	Set the same pressure to
	right and left regulators.	A in in the state	both the regulators.
	Air ingress into the pump	Air in liquid Evidence of calibration	Install a baffle in supply tank. Dup the number of the may.
	Trapped air in the bellows	Evidence of Calibration	Run the pump at the max
Pulsation is not	Calibration	○ If the pump speed stays	speed to expel air. • Waite until calibration
dampened.	Calibration		
	Calibration with discharge	at a target rate. o If discharge pressure fluc-	ends. Waite until calibration
	pressure fluctuation	tuates.	ends.
	Supply air pressure/air flow	Supply air pressure/air	Observe the max air con-
	is too low.	flow	sumption/air flow.
	Composite effective cross	Effective cross sectional	Meet the minimum com-
	sectional area is too small.	area of each pneumatic	posite effective cross-
	Scotional area is too sinali.	device	sectional area required.
*Solutions marked with *	L	GEVICE	Sectional area required.

^{*}Solutions marked with * are conducted by us.

States	Possible causes	Points to be checked	Solutions
	Supply air pressure or air	○ If proper air line I.D. is	Reset the system.
	flow is too low.	selected if two or more	 Adjsut the regulator set
		pumps are installed.	pressure as necessary.
	Discharge pressure incre-	○ Filter for clogging.	Review discharge condi-
	ment	○ If a filter is wet.	tions.
Flow rate is reduced.		o If discharge line is open.	
Tiow rate is reduced.	Pump a check valve is	○ A check valve for clog-	 Install a guard filter in
	clogged with foreign mat-	ging.	a suction line. Clean or
	ters.		replace pump head*
	Insufficient NPSHa	○ Air line I.D. and length	Review suction condi-
	(Net positive suction head		tions.
	available)		
	Bellows rupture	○ Supply air pressure	Replace the bellows if
		○ Stroke rate	damaged.*
		Liquid temperature	Observe pump spec and
Liquid leaks.		o If discharge line pressure	composite effective cross
Liquia ioano.		is released as soon as	sectional area.
		the pump stops.	
		○ Air line I.D and length	
		Closed suction line	
	Worn lip seal	Air leak from the air	Replace as necessary.*
Excessive air con-		chamber	
sumption.	Stud bolt is loose.	Air leak from the air	Tighten stud bolts with
		chamber	rated torque. See next
			page.
	Worn valve or valve seat	-	Check, clean or replace
Unbalanced pump			the pump*.
operation	Switch-over failure of the	 Solenoid valve set pres- 	Inspect, repair or replace
	SV	sure	the solenoid valve.
Excessive vibration	Loose pump fixation	-	Tighten anchor bolts.
or noise	Stroke rate is too high.	○ The rated stroke rate	Observe the maximum
			stroke rate.
	Chemical crystal,		Do not send a liquid that
	Wafer or check valve frag-		crystallizes by nature.
Foreign matters from	ments (through long time	_	Install a guard filter in a
the pump outlet	operation)		suction/discharge line.
			Clean or replace pump
			head.*

^{*}Solutions marked with * are conducted by us.

Inspection

Perform daily and periodic inspection to keep pump performance and safety.

Daily inspection

Check for a leak or any other abnormality during operation. Upon sensing abnormality, stop operation immediately and remove problems according to "Troubleshooting". Replacement of wear parts is necessary at periodic intervals. Contact us or your nearest distributor.

No.	Points to be checked	Remarks
1	Stroke rate	Observe the maximum stroke rate at each supply air pressure range.
2	Regulator set pressure	Observe the supply air pressure range at each liquid temperature.
3	Air flow rate	Use a flow meter. Observe the maximum air consumption.
4	A leak from an air or liquid line	Check line connections

^{*}The maximum stroke rate changes with supply air pressure. See page 67 for detail.

Periodic inspection

Check the following items every month.

1. Stroke rate reduction

Stroke rate reduces as air leaks. The wear of lip seal is a cause of air leak. Replace the lip seal as neces-

*Lip seal replacement should be conducted by Iwaki.

2. Air and liquid leak

If air or liquid leak is detected from the pump, release the discharge pressure and the supply air pressure, and leave the pump until it cools down to ambient. Then retighten the stud bolts by 8.3N m.

3. Valve assembly and bellows

Valve assembly and bellows are wear parts and need to be replaced at the end of their estimated life or when their performance deteriorates.

- *Life span at each wear part differs with a liquid handled and operating condition.
- *Valve assembly and bellows replacement should be conducted by Iwaki.
- 4. Pump operation after a long period of suspension

Supply the air to the pump (approx. 0.2MPa) and confirm there is no air leakage from the outlet before operation.

^{*}The supply air pressure range changes with liquid temperature. See page 67 for detail.

Wear part list

To run the pump for a long period, wear parts need to be replaced periodically or when pump performance has reduced. Contact your distributor with the following information for wear part replacement.

- 1. Part names and part number (See "Part names" on page 70.)
- 2. Pump model identification code and manufacturing number (See pump nameplate.)
- 3. Drawing number if you have our approval drawing

Parts No.	Parts names	Q'ty*1	Estimated life*2
1,2,3,4,5,6	Pump head bellows UNIT	1	
17,18	Connecting shaft R UNIT	2	
20	Main retainer	4	
21	Auxiliary retainer	4	
23	Linear bush	2	1 year
24	Main spring	2	
25	Auxiliary spring	2	
34	Lip seal	2	
40	Laser type displacement sensor	2	

^{*1} Q'ty shows the number of parts per pump.

^{*2} The estimated life span varies with operating conditions and is not warranted.

Specification/Outer dimension

Specification

Information in this section is subject to change without notice.

■ Pump

	Items	Spec		
	Ambient temperature/humidity	0-40°C/30-60%RH (non-condensing)		
	Storage temperature/humidity	-10-60°C/20-70%RH (non-condensing)		
	Installation location	Indoor	(No dusty enviror	nment)
Operating conditions	Operation rating	Int	ermittent/continuo	us
	Driving method	Pneumatic drive		
	Pump connection	PFA tube (O.D. 25 × I.D. 22 mm)		22 mm)
	Supply air port bore	Rc3/8"		
	Max. flow rate*1		50L/min	
	Liquid temperature range	5-100°C	101-150°C	151-180°C
Performance	Supply air pressure range	0.1-0.5MPa	0.1-0.4MPa	0.1-0.3MPa
	Suction lift*2		1m	
	Max. allowable liquid viscosity	50mPa•s		

^{*1} The maximum flow rate is based on pumping clean water at an ambient temperature and the supply air pressure of

Stroke rate/Air comsumption at each suppry air pressure

Items			Spec		
Supply air pressure	0.41-0.5MPa	0.31-0.4MPa	0.21-0.3MPa	0.11-0.2MPa	0.10MPa
Max stroke rate	120spm	140spm	155spm	160spm	160spm
Max air consumption	464NL/min	419NL/min	388NL/min	252NL/min	116NL/min

■ LPC-1 controller

Item	Items		Spec
	Power voltage		24VDC (-5% - 10%)
	Max. power	LPC-1	0.11A
	consumption	24VDC signal	1.8A
Operating	Amb	ient temperature	0-50°C
conditions	An	nbient humidity	5-90%RH (non-condensing)
		age temperature	-10 - 60°C
		ter dimensions	W185×D152×H112mm
		Weight	1.3kg
	Number of input channels		6 (single-end input)
		Displacement sensor	0-10V
Analogue input		Regulator (Pressure sensor)	1-5V
input	Input voltage	Look concer	0Ω to infinity
		Leak sensor (Resistance range)	Detectable at $15k\Omega$ or below (Initial resistance: $10M\Omega$ or more)

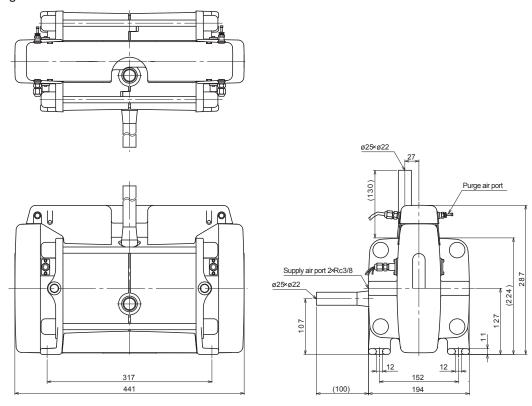
^{*2} The suction lift is based on pumping clean water at an ambient temperature and the maximum spm.

	Number of in	put channels	6
	Input v	oltage	24V
Digital input	Input o	current	5mA(min)/10mA(max)
Digital input	Insul	ation	Photocoupler insulation
	Withstan	d voltage	500VAC/min (breaking current 0.5mA or below)
	Insulation	resistance	50MΩ or more
	Number of chan	nels to regulator	2
	Output voltage rar	ge to the regulator	0-10V
	Output	solation	None
Analogue output	Max outp	ut current	5mA
σαιραι	Min load resistance		2kΩ
	Min load	capacity	200pF
	DA conversion		Trigger source signal, Software trigger
	Number of ou	tput channels	7
	Outpu	it type	Open collector
Digital autaut	Max output current	SV ch1/ch2	300mA
Digital output	Insul	ation	Photocoupler insulation
	Withstan	d voltage	500VAC/min (breaking current 0.5mA or below)
	Insulation resistance		50MΩ or more (500VDC)

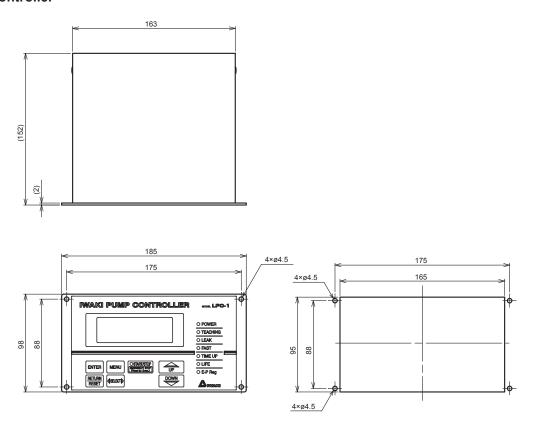
■ Proximity switch

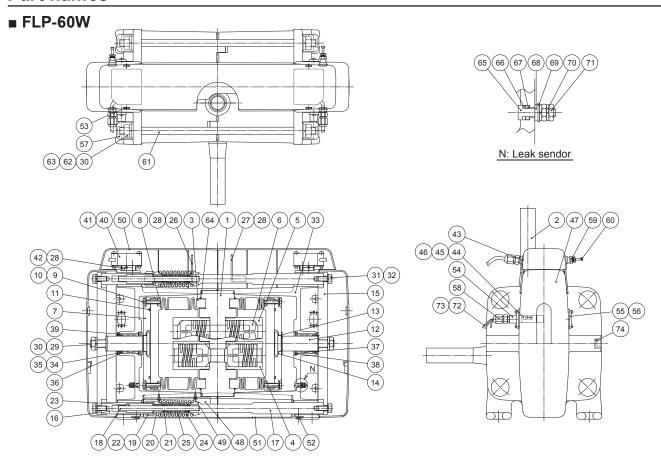
Items	Spec
Manufacturer	KOYO ELECTRONICS INDUSTRIES CO.,LTD
Model	APS4-12U-E-2242
Output type	Open collector
Power voltage	10-30VDC

■ Displacement sensor


Items	Spec
Manufacturer	OPTEX FA CO.,LTD.
Model	CD33-120NV
Analogue output	0-10V
Power voltage	18-24VDC

■ Leak sensor


Items	Spec
Probe material	Stainless


■ FLP-60W

Weight: 22kg


■ LPC-1 controller

No.	Name	Q'ty		Remarks	No.	Name	Q'ty		Remarks	
1	Pump head		PTFE		38	Stop ring			Nominal 37	
2	Tube		PFA		39	Screw	8	STNLS STL	M3×8	
3	Bellows		PTFE		40	Displacement sensor	2	-		
4	Suction valve case		PTFE			Screw	4		M4×25	
	Discharge valve case	2	PTFE		42	Sensor fixed plate	2	STNLS STL		
6	Valve		PTFE		43	Cover bush		PPE		
7	Bellows plate	2	ADC12	4F coating	44	Proximity detector	2	-		
8	Bellows flange	4	STNLS STL		45	Screw	4	STNLS STL	M3×10	
9	Hexagon bolt			M6×25		Mounting base	2	STNLS STL		
	Spring washer			M6	47	Cylinder head cover	2	PPE		
11	O ring		FKM	G-110	48	Spring cover	2	STNLS STL		
12	Pump shaft			HCP	49	Hex soch head bolt	4	STNLS STL	M3×4	
13	Stop ring		STNLS STL	E-19	50	Top cover		PPE		
	O ring		FKM	S-32	51	Under cover		PPE		
15	Connecting plate		STNLS STL		52	Low head bolt	4		M4×8 4F coating	
16	Connecting shaft L		STNLS STL		53	Screw	4		M4×8 4F coating	
17	Connecting shaft R	2	STNLS STL		54	Switch holder A	2	PPE		
18	Slide shaft	2	STNLS STL		55	Switch holder B	2	PPE		
19	Retainer L	2	STNLS STL		56	Screw		STNLS STL	M3×6 4F coating	
20	Main retainer		PPS		57	Сар		PP		
21	Auxiliary retainer	4	PPS		58	Connector	4	PP	CP-C8-R1/8	
22	Set screw	2	STNLS STL	M4×4	59	Straight fitting	2		PPC4-01C	
23	Linear bush	2	STNLS STL	SMS8W KGL	60	Plug	2	-	PPP4C	
24	Main spring	2	STNLS STL	CRYO-S	61	Stud bolt	4	STNLS STL	4F coating	
25	Auxiliary spring	2	STNLS STL	CRYO-S	62	Hexagon nut	8	STNLS STL	M12	
26	Target L	1	STNLS STL			Plate washer	8	STNLS STL	M12	
27	Target R	1	STNLS STL		64	O ring	2		AS568-166	
28	Screw		STNLS STL	M4×6	65	Leak sensor	4	STNLS STL		
29	Hexagon nut			M12	66	Gasket	4	PTFE		
30	Spring washer	10	STNLS STL	M12	67	O ring	4	FKM	P-4	
	Hexagon bolt	4	STNLS STL	M8×18	68	Gasket C		PTFE		
	Spring washer	4	STNLS STL	M8	69	Plate washer	4	STNLS STL	M4	
	Cylinder head			4F coating	70	Spring washer	8		M4	
34	Lip seal		Filled PTFE		71	Hexagon nut	8	STNLS STL	M4	
35	O ring	2	FKM	S-30	72	Black cord	2	-		
36	Packing stopper	2	STNLS STL			White cord	2	-		
37	Bearing		Filled PTFE			Cap plug		STNLS STL	3/8" 4F coating	
	**AF coating is not him hole loss									

^{*4}F coating is not pin-hole less.

http://www.iwakipumps.jp

IWAKI CO.,LTD. 6-6 Kanda-Sudacho 2-chome Chiyoda-ku Tokyo 101-8558 Japan TEL:(81)3 3254 2935 FAX:3 3252 8892

Australia	IWAKI Pumps Australia Pty. Ltd.	TEL: (61)298992411	FAX:298992421	Italy	IWAKI Europe GmbH, Italy Branch	TEL: (39)04443/1115	FAX:0444335350
Austria	IWAKI EUROPE GmbH	TEL: (49)2154 92540	FAX:2154925448	Korea	IWAKI Korea Co.,Ltd.	TEL: (82)226304800	FAX:226304801
Belgium	IWAKI Belgium n.v.	TEL: (32)1367 0200	FAX: 1367 2030	Malaysia	IWAKIm Sdn. Bhd.	TEL: (60)378038807	FAX:378034800
China	IWAKI Pumps (Shanghai) Co., Ltd.	TEL: (86)21 6272 7502	FAX:21 6272 6929	Norway	IWAKI Norge AS	TEL: (47)23 38 49 00	FAX:23384901
China	IWAKI Pumps (Guangdong) Co., Ltd.	TEL: (86)7503866228	FAX:7503866278	Singapore	IWAKI Singapore Pte. Ltd.	TEL: (65)6316 2028	FAX:63163221
China	GFTZ IWAKI Engineering & Trading (Guangzhou)	TEL: (86)20 8435 0603	FAX: 20 8435 9181	Spain	IWAKI Europe GmbH, Spain Branch	TEL: (34)93 37 70 198	FAX:934740991
China	GFTZ IWAKI Engineering & Trading (Beijing)	TEL: (86)10 6442 7713	FAX: 1064427712	Sweden	IWAKI Sverige AB	TEL: (46)851172900	FAX:851172922
Denmark	IWAKI Nordic A/S	TEL: (45)48 24 2345	FAX:48242346	Switzerland	IWAKI (Schweiz) AG	TEL: (41)26 674 9300	FAX:266749302
Finland	IWAKI Suomi Oy	TEL: (358)9 2745810	FAX:92742715	Taiwan	IWAKI Pumps Taiwan Co., Ltd.	TEL: (886)282276900	FAX:282276818
France	IWAKI France S.A.	TEL: (33)1 69 63 33 70	FAX:164499273	Taiwan	IWAKI Pumps Taiwan (Hsin-chu) Co., Ltd.	TEL: (886)3 573 5797	FAX: (886)3 573 5798
Germany	IWAKI EUROPE GmbH	TEL: (49)215492540	FAX:2154925448	Thailand	IWAKI (Thailand) Co.,Ltd.	TEL: (66)23222471	FAX:23222477
Holland	IWAKI Europe GmbH, Netherlands Branch	TEL: (31)547 293 160	FAX:547292332	U.K.	IWAKI Pumps (UK) LTD.	TEL: (44)1743 231363	FAX: 1743 366507
Hong Kong IWAKI Pumps Co., Ltd.		TEL: (852)2607 1168	FAX:26071000	U.S.A.	IWAKI AMERICA Inc.	TEL: (1)508 429 1440	FAX:5084291386
Indonesia	IWAKI Singapore (Indonesia Branch)	TEL: (62)21 690 6606	FAX:21 690 6612	Vietnam	IWAKI pumps Vietnam Co.,Ltd.	TEL: (84)613 933456	FAX:613933399